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SUMMARY 
The kinetic-theory-based solution methods for the Euler equations proposed by Pullin and Reitz are here 
extended to provide new finite volume numerical methods for the solution of the unsteady Navier-Stokes 
equations. Two approaches have been taken. In the first, the equilibrium interface method (EIM), the 
forward- and backward-flowing molecular fluxes between two cells are assumed to come into kinetic 
equilibrium at the interface between the cells. Once the resulting equilibrium states at all cell interfaces are 
known, the evaluation of the Navier-Stokes fluxes is straightforward. In the second method, standard 
kinetic theory is used to evaluate the artificial dissipation terms which appear in Pullin’s Euler solver. These 
terms are subtracted from the fluxes and the Navier-Stokes dissipative fluxes are added in. The new 
methods have been tested in a 1D steady flow to yield a solution for the interior structure of a shock wave 
and in a 2D unsteady boundary layer flow. The 1D solutions are shown to be remarkably accurate for cell 
sizes large compared to the length scale of the gradients in the flow and to converge to the exact solutions as 
the cell size is decreased. The steady-state solutions obtained with EIM agree with those of other methods, 
yet require a considerably reduced computational effort. 
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1. INTRODUCTION 

Pullin’ and Reitz’ proposed numerical methods for the solution of the Euler equations which 
exploited the fact that these equations can be derived from the Boltzmann equation of the kinetic 
theory of gases in the limit of an infinite molecular collision rate. These kinetic theory methods 
are automatically upwinding in the sense that they ensure that information is transmitted in the 
physically correct directions. Deshpande3 has called these methods ‘kinetic flux vector splitting 
methods’. Pullin’s method, which he called the Equilibrium Flux Method, or EFM, is a finite 
volume method more conveniently applied to multidimensional flows4 -‘ than Reitz’s method. It 
is the purpose of this paper to develop Pullin’s finite volume kinetic theory method into a solution 
method for the Navier-Stokes equations. 

In one dimension Pullin’s method can be shown to be equivalent to a finite difference method 
for the solution of the Euler equations with added pseudo-dissipative terms which are strong 
functions of the local Mach n ~ m b e r . ~  In general, a finite volume shock-capturing method for 
solving the Euler equations usually solves, in effect, an equation similar to the Navier-Stokes 
equations in integral form (see equation (I)). That is, an Euler solver produces fluxes which are 
estimates of the Euler fluxes FE, yet contain something which can be interpreted as inherent 
numerical or artificial dissipation. The size of this dissipation may vary from point to point in the 
computational grid. Such a method can be converted to a method for the Navier-Stokes 
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equations by adding the appropriate dissipative flux terms to the flux expressions, but this is futile 
if the inherent dissipation of the Euler method is so large as to overwhelm the true dissipation 
term. EFM can be made second-order accurate' by the standard min-mod gradient strategy'. 
and could be the basis of a Navier-Stokes solver. A different approach is to eliminate the inherent 
dissipation in the first-order version of EFM before adding the Navier-Stokes fluxes. Another 
kinetic theory approach, also described below, does not quite eliminate the pseudo-dissipation 
terms of the underlying Euler solver before the correct dissipative fluxes are added. 

2. THE NAVIER-STOKES EQUATIONS 

Consider a space (x, y ,  z) divided into N contiguous elements of volume 5 for j =  1, N. Let S be 
the surface of 5 and fi the outward normal, and let the unit vectors fi and Q form with 6 an 
orthogonal set of local axes at the surface S. Let v be the local fluid velocity and let (v., up, v q )  
denote its components relative to the local axes. The Navier-Stokes equations for the conserva- 
tion of mass, momentum and energy in integral or control volume form can be written for each 
volume vj as 

where the conserved quantities (per unit volume) are 

U= 

and the fluxes across S are written in two parts: the Euler fluxes 

and the dissipative fluxes 

F D =  - I;. (4) 

In equation (2), einc is the specific internal energy and a perfect gas equation of state, 
p = p R T = p ( y -  l)eint, where R is the ordinary gas constant, has been assumed. The znj are the 
stresses (excluding the thermodynamic pressure) acting on the surface S and 4. is the component 
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of the heat flux vector normal to S. These are related to the strain rates in the fluid by the 
constitutive relations 

rnn = ( 4 ~ / 3  + PB)dvn/axn + (PB - 2 ~ / 3 ) ( a ~ p / a x p +  auqlaxq), ( 5 )  

where p is the coefficient of dynamic viscosity, pB is the coefficient of bulk viscosity, k is the 
thermal conductivity and (x,,, x,,, x 4 )  are position co-ordinates measured in the directions of the 
unit vectors Ci, 3 and 4 attached to the surface S. 

3. KINETIC THEORY SOLUTION METHODS FOR THE CONTINUUM EQUATIONS 

The Boltzmann equation is the fundamental equation of the kinetic theory of gases and can be 
written as 

a(nf)/dt + c V(nf ) = D,(nf ), (9) 

where n is the number density of the molecules of the gas, f(c, E,,, x, t) is the molecular velocity 
distribution function, x is the position, c is the molecular velocity and E ,  is the energy in the 
molecular structure (i.e. rotational, vibrational, electronic energy, etc.) divided by the mass of the 
molecule m. The right-hand side of (9) represents the collision integral." The conservation 
equations which are solved by EFM can be derived by first multiplying (9) by the molecular 
quantities Q = [my mc, m(4c2 + cst)]. The resulting equation is then integrated over 5 and over all 
molecular velocities c and over all E ~ ~ .  The resulting term on the RHS, 

Q D,(nf ) dc d VdE,,, l* b.rm 
is a source term giving the production of Q by collisions and it vanishes since the sum of Q over 
the collision partners is conserved for each collision. After applying the divergence theorem to the 
second volume integral on the LHS, we have 

where 

and 

jvj U d V +  Is F dS = 0, 

nQfc-fidcde,,. .=I: s_9, 
From (1 1) the components of U can be evaluated and are, for any nf, 
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where p =mn, v = Jfc dc is the mean molecular velocity or macroscopic fluid velocity, 
eint = j? (49’ + E,,) f dc dE,, and 9= c - v is the random or thermal part of the molecular 
velocity. In other words U is the same as U in (2) except that eint is a more general quantity than 
the corresponding thermodynamic state variable which is strictly defined for a state of thermo- 
dynamic equilibrium only. 

It is a standard result of kinetic theory that the Navier-Stokes equations can be obtained from 
(10) if the distribution function which appears in (12) is the Chapman-Enskog distribution, which 
is of the form” 

where 

nfo = n ( a3/n3/2)exp [ - a2 (c - v)* ] (R T )  - exp [ - E,,/R T ] ,  (14) 

p=(2RT)-”’, and T is the temperature given by (y-l)eint/R. This distribution is a small 
perturbation about the local Maxwell-Boltzmann equilibrium distribution nfo and the perturba- 
tion @ is related to the gradients of macroscopic flow properties. It is also a standard result that in 
the limit f+f0 the fluxes in (12) reduce to the Euler fluxes FE in (3). 

The first approach taken here to evaluate the dissipative fluxes for a finite volume scheme is to 
derive first the local-equilibrium distribution function, no fo ,  at the interface S between two cells. 
Then the distribution function at S could be found from (13) provided that the local gradients 
dui /ax j  and a T / a x j  at the interface are known. Putting this distribution into (12) would produce 
the appropriate kinetic theory Navier-Stokes fluxes. The same result may be obtained more 
easily since, if nofo is known, the state Us at the interface between two cells is also known and the 
Euler part of the fluxes can be evaluated from (3). Furthermore, if the flow gradients are known, 
the dissipative fluxes can be found directly from (5)-(8). Viewed in this way, the proposed method 
may be thought of as a kinetic theory alternative to methods’,’’ which determine the interface 
state by solving a Riemann problem. We propose that this kinetic theory method be called the 
‘equilibrium interface method’ or EIM. 

4. THE EQUILIBRIUM INTERFACE METHOD 

Assuming local equilibrium within each cell adjacent to the surface S and a step change at 
S yields, for the molecules crossing S ,  the non-equilibrium distribution function 

where c, is the component of molecular velocity normal to the surface and the + and - super- 
scripts refer to the flow conditions interior and exterior to 5, respectively. The distribution is split 
into two parts since molecules on S having c,>O have come from inside V j  while those having 
c, -= 0 have come from outside Vj .  

The equilibrium distribution function at S is then assumed to be that distribution which would 
be brought about by the action of collisions amongst an isolated group of molecules which 
initially conformed to the distribution (15). Since the total mass, momentum and energy of the 
isolated group of molecules remain unchanged by collisions, the state corresponding to the 
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equilibrium distribution no fo on the interface surface S is given by the condition that 

p o =  w + p + +  w-p-, (17) 

where the weighting factor W* is given by 

and 
W * = [I kerf(s:)]/2 

s'=v'B*. 

where 

D' = + e x p [ - ( ~ , f ) ~ ] / ( 2 d ~ ~ ) .  

Finally, putting Q=m(ic2 + . E , ~ )  in (16), we get 

The interface temperature can then be determined as 

To=(Y- l)einto/R. 

The Euler fluxes, FEO, corresponding to this equilibrium interface state are obtained by putting 
p = po , v = vo and T= To in (3) and the dissipative fluxes are obtained directly from (4)-(8). 

5. A NAVIER-STOKES SOLVER-METHOD I1 

Another approach appears at first glance to be the same but is subtly different. First the fluxes are 
evaluated by assuming that the distribution function on S is given by (15). These are, in fact, the 
EFM fluxes derived by Pullin.' Next the viscous stresses and heat flux vector for this distribution 
are evaluated. These quantities, which are denoted by FD, make up the inherent dissipative part of 
the EFM fluxes. These dissipative fluxes are subtracted from the EFM fluxes and the dissipative 



182 M. N. MACROSSAN AND R. I. OLIVER 

fluxes of (4)-(8) are added in. Thus, this second numerical method solves, in effect, the equation 

U d V+ (F -FD + FD)dS =o, n b j  JS 
where F-FD is an approximation to the Euler part of the fluxes. 

pressure tensor 
The components of FD can be evaluated by the standard procedure in kinetic theory. First, the 

P i j = j a  - m  jm - m  
Si Sj mns fs dc, dc, dc, . (27) 

is evaluated, where nsfs is given by (1 5). In (27) 8= c - vo is the thermal velocity relative to the 
mean velocity vo given by (20)-(22). The viscous stresses in FD are given by 

r n n =  - ( P n n - P ' ) ,  

r n p =  - Pnp ,  

T nq = - p  nq 3 

where the non-equilibrium pressure p' is given by (pnn+ppp+pqq) /3  and p p p  and pq4 can be 
evaluated from (27).  The results are1' 

T$ = w ' p  * ((v * -vo)' - 2(un0  - un')'}/3 + 2 0  ' p  ' (2uno - u:)/3p '* (29) 

t:p= w +p'(u: - u p o ) ( u p o - u ~ ) + D * p ' ( u p o - u ~ ) / ~ * ,  (30) 

t,f4= W ' p '  (u; - uqo)(uq0 - ~4f)+D'p* (u,O - ~ $ ) / p * ,  (31) 

The thermal energy flux across the surface in the direction of Ci for the distribution ns fs is given 
from kinetic theory as 

m 

4 n  = 1: S [$n($n$n + $p$p+ $q$q)/2 + $ n & i t  mnsfs dcdest > (32)  
-00 

which, with ns fs given by (15), can be split as 

Cpn=Cp: + d ~ , -  (33)  
The split components of Cp, are" 

Cp: = w'p' [$(V* -v0)2+t(7y-5)RT*/(y- l ) ] (u:  -u,o) 

+ (D*p*/B')[i(v * -VO)' + u,$-$vf uno + k ( 5 ~ - 3 ) R T * / ( y -  I)]. (34)  

The total outward energy flux term in FD includes the flux of the mean translational energy as 
well as the thermal energy and is 

- (VnoTnn +upOrnp+ uqornq- C p n h  (35) 
where vo is given by (20)-(22) and the zi j  are given by (28)-(31). The component corresponding to 
Q = m  in FD is zero. 

The fluxes F - FD, in the second method, differ from the fluxes FEO of the equilibrium interface 
method primarily because the translational and structural parts of the molecular energy are not 
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brought into equilibrium with each other. Consequently, the approximation to the Euler fluxes, 
F - FD does not correspond exactly to any equilibrium distribution function. 

6. 1D TEST CASE SHOCK WAVE INTERNAL STRUCTURE 

As a first test of these new methods, each has been used to obtain a numerical solution of the 
Navier-Stokes equations for the one-dimensional flow through a plane normal shock wave. 
These solutions are compared with the numerical solution obtained by integrating the continuum 
Navier-Stokes equations, following the method of Gilbarg and Paol~cci, '~ which is referred 
to hereafter as the 'exact solution'. 

Figure 1 shows a typical exact solution for the density profile through a plane shock wave in 
the frame of reference in which the shock is stationary. Upstream flow conditions are denoted by 
the subscript 1 and downstream values by the subscript 2. The solution asymptotes to the 
upstream and downstream values, which are related by the Rankine-Hugoniot relations. The 
origin of the x-axis is at the point where p = ( p i  + p 2 ) / 2 .  A convenient length scale is the upstream 
mean free path evaluated as 

(36) 

The gas was assumed to have a constant ratio of specific heats of y =  1.4. The viscosity and 
thermal conductivity were given by the Sutherland formulae 

and 
(37) 

(38) 
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Figure 1. A typical density profile through a plane shock. The shock thickness 4 is obtained from the maximum density 
gradient inside the shock 
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with the following constants which are appropriate for nitrogen: po = 16-63 x Nm-2  s, 
k,, = 0.02423 W m- K-  ', To = 273.15 K, S, = 106.7 K and Sk = 166.7 K. The bulk viscosity for 
nitrogen has been taken14 as 71/15. The pre-shock conditions were Tl=223K and 
p1 = O N  kgm-3. 

time-stepping scheme 
In the finite volume methods the discretized version of (1) was advanced by the explicit 

(39) 

where FE represents the estimation of the Euler fluxes associated with each method. In one 
dimension, the surface integral in (39) can be divided into contributions from two faces in each 
cell, and the flow was assumed to have reached steady state when the surface integral divided by 
the maximum of the contribution from the two faces was less than in every cell. A one- 
dimensional regular grid was used, and the d(*)/an derivatives in ( 5 )  and (8) were evaluated by 
central differences. 

The initial conditions for the shock problem were given by a step function between the 
appropriate upstream and downstream values of all flow properties. This discontinuity gradually 
relaxed into a steady smooth profile between the fixed boundary cells located at x k 3021. The 
first test was for M = 1-2 and cell sizes were 0.5 < Ax/;ll <9. The results for the smallest cell size are 
compared with the exact solution in Figure 2. Also shown is a solution obtained by the naive 
method (denoted as Method 111) of adding the appropriate Navier-Stokes terms to the flux 
expressions for first-order EFM. As expected, the inherent dissipation in first-order EFM makes 
this approach the least accurate. In contrast, the solution for EIM is extremely accurate at this 
cell size and slightly better than Method 11. 
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Figure 2. Density profiles in a plane shock with M,= 1.2 calculated by: 0 EIM; A Method II; + Method III; __ exact 
solution of Reference 13 
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A measure of the accuracy of these numerical solutions is given by the shock thickness As (see 
Figure 1) determined from the maximum density gradient within the shock, that is, 

As = ( Pz  - P 1 ) l c~P l~x ) rna , .  

The shock thicknesses determined for the three methods on different grids are shown in 
Figure 3. Each method is converging to the exact value as a linear function of Ax (first-order 

4 - 1  

0 '  I I I I I I I 

0 1 2 3 4 5 6 7 8 
AxlA, 

Figure 3. Shock thickness As (for M,= 1.2) as calculated by the three kinetic theory methods compared with the exact 
shock thickness Ae. See Figure 2 for legend. All methods converge to the exact solution as Ax-0 
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Figure 4. Density profiles in a plane shock ( M , =  1.2) for a cell size Ax=91,, calculated by: ---C-- EIM; -A- 
Method 11; ---exact solution of Reference 13 



186 M. N. MACROSSAN AND R. 1. OLIVER 

convergence). Note, however, that the EIM results are always very close to the exact solution even 
for cell sizes large compared to the characteristic length scale (1,) of the shock structure being 
resolved. The shock profiles calculated with a large cell size, Ax = 91,, are shown in Figure 4, and 
the results for EIM are remarkably accurate. 

Calculations were made for shock Mach numbers of M ,  = 3,6 and 9, for which the exact values 
of A, were found to be 2.3111, 1.87A1 and 1.81A1, respectively. EIM was unstable for cell sizes 
greater than 3A1 for all these Mach numbers while Method I1 was stable for cell sizes up to 15& in 
all cases. This indicates that the most accurate method (EIM) as it stands may not generally be 
shock capturing on the grids that are normally used in aerospace work, where the cell size may be 
orders of magnitude larger than the correct shock thickness. This is discussed further in Section 8. 

7. 2D TEST CASE UNSTEADY DEVELOPMENT OF A BOUNDARY LAYER 

The new methods were used to calculate the unsteady development of a boundary layer on a flat 
plate. The flow chosen was the same as the one chosen by Jacobs” to test his finite volume 
Navier-Stokes code. Jacobs’ code seems representative of those currently in use. The dissipative 
fluxes have been added to a second-order-accurate (in space) inviscid flow solverI6 in which the 
inviscid fluxes are determined by solving a one-dimensional Riemann problem at each interface 
between cells. The states on either side of the interface before the application of the Reimann 
solver are dertermined by assuming gradients of flow properties across the cells. 

Jacobs considered a perfect gas with a ratio of specific heats of y = 1.4 and with viscosity given 
by a Sutherland viscosity law (37) with a constant S,= 110.4 K. The bulk viscosity was taken as 
zero and the thermal conducitivity was taken as proportional to the vicosity with a constant 
Prandtl number of 0.72. The body was a flat plate aligned with the freestream velocity. The 
freestream Mach number and temperature were, respectively M1 = 2  and TI =222 K. The wall 
temperature was fixed at T, = T ,  . The Reynolds number, ReL = p1 U1 L / p l ,  based on the free- 
stream conditions and the plate length L was 1-65 x 10’. Jacobs has also used a spectral method” 
to solve the standard boundary layer equations (derived from the Navier-Stokes equations by 
dropping a number of terms) and has made that solution, as well as the results from his finite 
volume code, available to us for comparison. 

A schematic diagram of the grid used in our calculations is shown in Figure 5. The cell 
boundaries are parallel to the x- or y-axis and the cell dimensions Ax and Ay vary in an arithmetic 
progression, with the smallest Ay closest to the plate and the smallest Ax near the upstream (west) 
boundary of the grid. The grid was extended to x = L  and y=O-68L, and the upper (north) 
boundary was held at the freestream conditions. The fluxes at the downstream (east) boundary 
were determined by assuming that there were no gradients of any properties in the x-direction at 
this boundary. The unsteady development of the flow from an impulsive start was calculated with 
a CFL number of 0.8 which is same as that used by Jacobs.15 

The Euler components of the fluxes at the wall were calculated by using a ghost cell below the 
wall and using the general algorithm at the wall. The only property in the ghost cell which differs 
from the corresponding property in the adjacent cell within the flow is the velocity normal to the 
wall, which is reversed. This ensures that the mass, parallel momentum and energy components of 
the Euler fluxes at the wall are zero. After the Euler fluxes at each interface are calculated, the 
dissipative fluxes FD of (4)-(8) are added in. 

The flow gradients which appear in (9, (6) and (8) were evaluated at each cell interface using 
a quadratic fit to three values of the flow state. The central value is always the value for the 
equilibrium interface state, determined when calculating the inviscid fluxes, and the other two 
values are, for gradients normal to the interface, the adjacent cell centred states or, for gradients 
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t Y  
J = L - l  

Figure 5. A schematic diagram of a typical finite volume grid used for the flat plate problem. All cells are rectangular and 
the cell side lengths vary in an arithmetic progression in the x- and y-direction. The boundary at y =O is a wall at a fixed 

temperature 

parallel to the interface, the adjacent interface states. At the wall, the fluid velocity was taken as 
zero and the temperature was taken as the known wall temperature. Gradients at the plate 
surface, normal to the surface, were determined by fitting a quadratic to the known values of 
velocity and temperature at the wall and the values at the centre of the first two cells out from the 
wall in the y-direction. 

Figure 6 shows the pressure contours as calculated with EIM at two values of time elapsed 
since the impulsive start of the flow. For the larger elapsed time the flow is very nearly steady. The 
weak leading-edge interaction shock has been captured and it is reasonably clear that the north 
and east boundaries should have little effect on the results in the boundary layer. 

The development of the boundary layer as calculated by EIM can be seen in Figure 7, which 
shows the x-component of velocity at the station x/L=O.916 at different times after the impulsive 
start of the flow. The two kinetic theory methods were found to give very similar velocity profiles 
but, as shown in Figure 8(a), rather different temperature profiles. It is shown below that EIM 
agrees with other methods for this flow, and this, coupled with the results obtained for the 1D 
flow in Section 6, indicates that EIM is considerably more accurate than the second method. This 
difference should be reduced for a gas in which no internal energy is stored in the molecular 
structure. Results were obtained for the two methods for a flow with the same freestream Mach 
number but with y = 5/3 and all other properties as given above. In this case the temperature 
profiles in the boundary layer were indistinguishable, as shown in Figure 8(b). The second 
method is not considered further here. 

Different grids were used to show that the EIM solutions near the rear of the plate (at 
x/L=O.916) are independent of the cell size. The temperature profiles in the boundary layer for 
these grids are shown in Figure 9 and the details regarding the grids are given in Table I. Only 
two of the grids gave results easily distinguishable from those on the more refined grids, but the 
differences were very small. 

Figure 10 shows a comparison of the temperature profile across the boundary layer for EIM on 
a 52 x 250 grid with the spectral solution and the finite volume solution given by Jacobs” on 
a 50 x 50 grid. At this station (near the rear of the plate), the cell sizes in the boundary layer are 
similar for the two finite volume methods, but near the front of the plate, where the boundary 
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(b) 

Figure 6. Pressure contours pipl = 1.01, 1.015, 1.02, . . . calculated by EIM on grid 1, Table I. MI =2.0, Re,= 1.65 x lo5, 
y=1.4, Pr=0.7, T , =  T,=222 K, with viscosity given by (37) and a Sutherland constant SV=11O4K. Grid 1, TableI. 

(a) tU,/L=0.96 (b) tU,/L=4.78 

layer develops, Jacobs has used cells which are very much smaller in both dimensions than the 
cells in our grid. His grid is not orthogonal and extends in the y-direction little further than the 
edge of the leading-edge interaction shock. 

Both finite volume solutions agree with the spectral solution near the wall and past the point of 
maximum temperature but differ slightly from the spectral solution near the edge of the boundary 
layer. Note that the boundary conditions imposed on the spectral solution of the boundary layer 
equations at the edge of the boundary layer are identical to the freestream conditions. In fact, 
however, these conditions should be slightly different from the freestream conditions because of 
the weak leading-edge interaction shock. This is probably enough to account for the difference in 
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Figure 7. Unsteady development of the boundary layer. x-velocity profile for EIM at tU,/L=O.19, 0.66, 1.10, 1.91 and 

4.78. Conditions as for Figure 6. Grid 2, Table I 
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Figure 8. Kinetic theory methods compared: + EIM; -a- Method 11. (a) for conditions as in Figure 6, y = 1.4, 
tU,/L=4.78. (b) y - 5 / 3 ,  t U , / L =  1.0 
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Figure 9. Temperature profiles at x/L=0.916 on different grids (EIM): V Grid 1, 0 grid 2, A grid 3, + grid 4, grid 5. 
Conditions as in Figure 6 

Table I. 

Grid size AXIL Ay/L" Number of Total CPUb Effective Y-MP timec 
Nx x N ,  (10-4) time steps (h) (ps/cell/time step) 

1 52x125 35.1 9 8 9  4200 2-74' 12.0 
2 52x250  35.0 4-95 8338 2-81' 11-6 
3 52 x 250 18.4 4.95 8475 11.0' 12.0 
4 52 x 250 35.0 2.59 15 760 200' 11.8 
5 52x250 35.0 1.33 29 108 27*88 - 

* Shows the smallest cell dimension in each direction. Cell dimensions increased in an arithmetic progression in the 
positive x- and y-direction. The relative size of largest to smallest cell is different in different calculations. 

Values marked are for a Sun Microsystems SPARC station 2. The value marked is for an IBM RISC/6000 530 
workstation, while the value marked gis for the same machine without the optimizing switches set on the xlf compiler. 

Shows the estimated time/cell/time step on a single processor of a Cray Y-MP, calculated assuming that a SPARC 2 and 
an IBM 530 are equivalent to 1/30 and lj8 of a Cray, respectively. 
All calculations were advanced until a simulated time of tU,/Lr4.78. The time-step was varied slightly throughout the 
calculation to keep the CFL number in any cell to GO% 

the profiles shown in Figure 10, since the temperature calculated by the finite volume methods is 
slightly greater than freestream temperature and is falling very slowly with increasing distance 
from the plate. 

Figure 11 shows the EIM result for the velocity profile at x/L=O.916 compared with the 
spectral solution of the boundary layer equations and with Jacobs' solution. Here we show the 
results for our coarsest grid, for which the temperature profile is very little different from that 
shown in Figure 10. Once again, the agreement with the other methods is good. 

Tabe I shows the CPU time required to obtain the nearly steady flow over the flat plate for 
different grids and the estimated Cray Y-MP CPU time for the kinetic theory method. The 
estimated 'Cray time' of about 12 ps/cell/timestep is about half of that reported by Jacobs." For 
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Figure 10. EIM compared with other methods: __ spectral method of Reference 17; 0,  finite volume method of 
Reference 15; A ,  EIM. Temperature profile at x/L=0.916, tU1/L=478. EIM on grid 3, Table I. 
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Figure 11. Velocity profile at x/L=0916, tU, /L=4.78.  EIM on grid 1, Table I. See Figure 10 for legend 

Jacobs' results, the total processing time was 1.6 h on a single processor of a Cray Y-MP. The 
total CPU time for the EIM calculation of Figure 10 was 10-0 h on a SUN Microsystems SPARC 
station 2 which, taking the speed of this machine as 1/30 of the Cray Y-MP, compares very 
favourably with the conventional method. For the grid used to obtain the results in Figure 11 the 
total CPU time was only 274 h on the SPARC station. 

There are a number of reasons for this decrease in computational effort (for a comparable 
degree of accuracy) for EIM. One reason is that EIM requires no iteration to determine the 
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interface states, as is required with the Riemann solver in the conventional method. No calcu- 
lation of flow gradients within cells has been used in EIM and this also accounts for some 
decrease in the computational effort. Another reason may be that, because of the regular grid used 
in these computations, the calculation of the gradients required in the determination of the 
dissipative fluxes is less expensive than for a non-orthogonal grid. The principal reason for the 
small computational effort required, however, is the good accuracy of EIM for large cell sizes. 
This is discussed further below. 

8. CONCLUSIONS 

A new kinetic-theory-based numerical method has been shown to produce accurate solutions of 
the Navier-Stokes equations for two flows containing strong gradients: the interior region of 
a plane shock, and the boundary layer on a flat plate. The plane shock calculations showed that 
the new method was able to produce accurate results for cell sizes large relative to the flow 
structure being resolved. The boundary layer calculations with the new method showed that it 
produced solutions of accuracy comparable to those of another finite volume method which uses 
a Riemann solver and a spatially second-order-accurate estimation of flow states within cells. The 
new method required considerably less computational effort. 

The principal reason for the reduced computational effort is the accuracy of the kinetic method 
which allows the use of relatively large cells. The computational expense of an explicit time step 
method arises from the small time step which must be used to keep the CFL number small in all 
the cells. Because of the very small cells used by Jacobs, his method required an order of 
magnitude greater number of time steps than did ours. Some of our advantage was lost since we 
used more (though generally not smaller) cells. We have not yet applied the method on a skewed 
or highly stretched grid, which would enable far fewer cells to be used, but we would expect 
a further reduction in computational time for a similar accuracy. 

For flows containing strong shocks, an accurate solution of the Navier-Stokes equations 
throughout the flow, including the interior of shocks, would be expected to produce shock 
thicknesses which are orders of magnitude less than the cell size in any feasible grid. The 
calculations for the internal structure of the plane shock did raise the question as to whether EIM 
would remain stable when the cell size became very large compared to the shock thickness. For 
the flat-plate boundary layer, a weak shock spread over many cells is captured by EIM, which is 
encouraging, but as it stands, EIM can be considered only as a first step towards a general robust 
and accurate kinetic theory solution method for the Navier-Stokes equations. To make EIM 
robust without losing accuracy, more dissipation might be added where discontinuities form, but 
not elsewhere. One possibility is to blend the fluxes from EIM and a more dissipative method 
with a weighting which is varied by some sort of switching like that used in Jameson’s Euler 
solver1’ to vary the artificial viscosity. Natural choices for the more dissipative fluxes which may 
be required are the dissipative components of the fluxes in Pullin’s kinetic theory EFM, which are 
given by (29)-(35). This possibility is not explored further here. 
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